Global cooling during the eocene-oligocene climate transition.

نویسندگان

  • Zhonghui Liu
  • Mark Pagani
  • David Zinniker
  • Robert Deconto
  • Matthew Huber
  • Henk Brinkhuis
  • Sunita R Shah
  • R Mark Leckie
  • Ann Pearson
چکیده

About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were approximately 20 degrees C and cooled an average of approximately 5 degrees C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition

Rapid global cooling at the Eocene - Oligocene Transition (EOT), ~33.9-33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first ...

متن کامل

Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition

Approximately 34 million years ago across the Eocene-Oligocene transition (EOT), Earth's climate tipped from a largely unglaciated state into one that sustained large ice sheets on Antarctica. Antarctic glaciation is attributed to a threshold response to slow decline in atmospheric CO2 but our understanding of the feedback processes triggered and of climate change on the other contents is limit...

متن کامل

GEOLOGICAL NOTES Regional Paleoprecipitation Records from the Late Eocene and Oligocene of North America

The marine dO record indicates precipitous cooling or significant expansion of Antarctic ice volume across the Eocene-Oligocene epoch boundary at 33.7 Ma. This climatic step is also found in estimates of decreased paleoprecipitation from paleosols in Oregon, Montana, and Nebraska but is only a part of a long-term decline across the Eocene-Oligocene transition rather than a sudden shift. This su...

متن کامل

Terrestrial cooling in Northern Europe during the eocene-oligocene transition.

Geochemical and modeling studies suggest that the transition from the "greenhouse" state of the Late Eocene to the "icehouse" conditions of the Oligocene 34-33.5 Ma was triggered by a reduction of atmospheric pCO2 that enabled the rapid buildup of a permanent ice sheet on the Antarctic continent. Marine records show that the drop in pCO2 during this interval was accompanied by a significant dec...

متن کامل

Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet infl uence on ocean circulation

We present an overview of the Eocene-Oligocene transition from a marine perspective and posit that growth of a continent-scale Antarctic ice sheet (25 × 106 km3) was a primary cause of a dramatic reorganization of ocean circulation and chemistry. The Eocene-Oligocene transition (EOT) was the culmination of long-term (107 yr scale) CO2 drawdown and related cooling that triggered a 0.5‰–0.9‰ tran...

متن کامل

in Tanzania Extinction and environmental change across the Eocene - Oligocene boundary

The Eocene-Oligocene transition (between ca. 34 and 33.5 Ma) is the most profound episode of lasting global change to have occurred since the end of the Cretaceous. Diverse geological evidence from around the world indicates cooling, ice growth, sea-level fall, and accelerated extinction at this time. Turnover in the oceanic plankton included the extinction of the foraminifer Family Hantkeninid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 323 5918  شماره 

صفحات  -

تاریخ انتشار 2009